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Background 

It is well recognised that workers are usually exposed to multiple exposures at workplaces (Sejbaek et 

al., 2020). An example was given by a nationwide survey that over 81% Australian workers were 

exposed to more than one carcinogen, and 26% to more than five carcinogens (McKenzie et al., 2020). 

Understanding the health effect from multiple occupational exposures has increasingly been a focus 

both for aetiology research and regulatory agencies (Fourneau et al., 2021, Bosson-Rieutort et al., 

2020). This aim has been further extended to the concept of “working-life exposome” that represents 

all occupational and related non-occupational exposure risk factors (e.g., environment, lifestyle, 

behavioural and socio-economic) (Pronk et al., 2021). The multiple exposure-response relationships 

that can be captured with the working-life exposome would lay the groundwork for evidence-based 

and cost-effective preventions, and ultimately improve working life health by reducing the burden of 

non-communicable diseases (Pronk et al., 2021). 

 

Epidemiological studies with the focus on the health effect associated with multiple exposures have 

been mainly explored for environmental exposures such as chemical mixtures. A number of novel 

methods have been developed and applied in this field, which have been comprehensively reviewed 

in (Braun et al., 2016, Gibson et al., 2019a, Huang et al., 2018, Lazarevic et al., 2019, Taylor et al., 2016, 

Vuong et al., 2020). Additionally, several papers have reviewed the statistical approaches by 

incorporating the “exposome” concept and state-of-the-art machine learning approaches (Agier et al., 

2016, Bellinger et al., 2017, Bi et al., 2019, Billionnet et al., 2012, Braun et al., 2016, Guillien et al., 

2021, Kino et al., 2021, Oskar and Stingone, 2020, Santos et al., 2020). 

 

By summarising these reviews and adapting the research questions for which the methods were 

developed to the EPHOR objectives, we here put forward two generalised research questions: 

(1) Identification of important exposure(s) and independent effects; and 

(2) Estimation of joint health effects. 

 

1. Identification of important exposure(s) and independent effects 

Because of the large number of occupational and non-occupational exposures that workers are 

exposed to, it is necessary to identify exposures that are most strongly associated with adverse health 

outcomes, including individual exposures or groups of highly correlated and related exposures with a 

common source (Braun et al., 2016). This leads to an important question epidemiology can address: 

from a range of possible exposures, what are the important exposures that contribute to the health 
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outcomes? Several studies and ample research have been focused on this question. An example in 

occupational epidemiology was given where researchers were interested in identifying important 

metals (from 16 measured metals) that are associated with the alteration of cardiovascular function 

(Zhang et al., 2017). Another example involves the studies of exposome-wide association analyses 

(EWAS), where Patel and colleagues investigated the association between 188 environmental and life-

style factors and serum lipid (Patel et al., 2012). 

 

Whilst the increasing number of measured exposures can potentially unravel previously unidentified 

exposure-response relationships, the large number of exposure variables brings challenges to 

statistical modelling. Specifically, multiple comparison problem occurs when one consider a set of 

statistical inferences simultaneously, resulting in many false discoveries (Type I error) of exposure-

response relations (Greenland, 2008). This is particularly the case for EWAS-related studies with a very 

large number of exposure variables and no strong a-priori hypotheses. Another challenge lays in the 

nature of occupational exposures where exposure levels of co-occurring exposures often show strong 

correlations. For conventional multiple regression models, such high degree of correlation between 

exposures would lead to unstable effect estimates and inflated standard errors (multicollinearity), and 

effects for individual exposures would be hard to disentangle. 

 

 

2. Estimation of joint health effects 

The other research question is the estimation of a joint health effect (also cumulative/overall effect). 

This refers to a potential summarised effect resulting from combined exposures to multiple 

occupational, environmental, and social stressors (Gibson et al., 2019a, Huang et al., 2018, Taylor et 

al., 2016). The motivation behind it is the overall effect from a large number of small-effect exposures 

(below regulatory limits) could still exist and pose adverse effect to public health (Gibson et al., 2019a). 

One main challenge is to identify and account for interactions (non-additive effects) between 

exposure variables, and this becomes more challenging when more exposures are involved (Barrera-

Gomez et al., 2017). The other challenge is to capture more complex, nonlinear exposure-response 

relationships. Many conventional statistical approaches like multiple linear regression assume linear 

effects, which may not sufficiently reflect the actual complex relationship. Therefore, more advanced 

statistical approaches are needed to estimate the joint health effect from multiple exposures, while 

accounting for the non-additive and nonlinear exposures-response relationships. 
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In this tutorial we present an overview of a suite of existing statistical approaches that can be applied 

to multiple exposure-response modelling in the context of working-life exposome. The basic 

principles, implementation, pro/cons, and their extensions are discussed and may serve as a useful 

guide for statistical analyses with multiple exposures.  

 

Method selection for multiple exposure analyses within EPHOR 

The selection of methods that are included in this tutorial followed the following steps: 

1) Method collection: We produced a list of modern methods by a comprehensive review of the 

existing review papers and model comparison papers that are related to multiple exposure 

analyses. 

2) Evaluation criteria: We developed detailed criteria that evaluate the performance, 

availability, and interpretability of the methods; and obtained feedback by reaching out to the 

EPHOR consortium and by holding a working session at the consortium meeting on 12th 

November 2021. 

3) Method evaluation: Based on the developed criteria and the received feedback, two experts 

(LP and TK, both with >10 years’ experience in biostatistics) were involved in several rounds 

of discussions to evaluate the list of methods and come up with a smaller set of methods upon 

agreement. 

The details of this selection process are provided in Appendices A and B. 

 

Selected methods for tutorial 

The feedback from the working session at consortium meeting was incorporated into the expert-based 

evaluation of methods. Details of the feedback are shown in Appendix A. Based on all the acquired 

information, we have highlighted three methods, which are considered to be most appropriate for the 

multiple exposure analyses for EPHOR project: 

- BKMR (Bayesian kernel machine regression);  

- Random Forest; and  

- LASSO (Least absolute shrinkage and selection operator). 

 

These three methods complement each other in terms of strengths and weaknesses, and are all 

relatively easy to apply in epidemiological analyses (as shown in Figure 1). These features will inform 

method selection, which depends on the specific research question (Appendix B). 
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Figure 1. Overview of the three selected methods 

 

General recommendations for method selection are as follows: 

- For researchers who seek simple models for variable selection, LASSO (combined with stability 

selection, details are in later section) and random forest are more preferred to apply for large 

datasets. LASSO could provide more interpretable results than random forest, and so-called 

“relaxed” LASSO models could be used to produce coefficients with less bias. 

- For researchers who have experience with Bayesian analyses (e.g., MCMC modelling), BKMR 

could be a more appropriate approach that provides more comprehensive outputs (e.g., 

exposure-response relationships and interaction). However, BKMR in its present form cannot 

be used for case-control studies and struggles when used on datasets with large number of 

observations. 

 

More description about the strengths and weakness of the three methods can be found in Table 1. 

Specifically for analyses with many exposure variables of interest (e.g., more than 20), random forest 

could be used as a variable pre-selection method, followed by BKMR to examine the exposure-

response relationships for selected variables in more detail. Note, however, the potential for bias and 

overfitting whenever model structure or parameter settings are based on results from earlier analyses 

using the same data. To assess the potential for bias, several different methods could be used in 

parallel to check the consistency of results. Also, empirical knowledge of the co-occurring exposures 

at workplaces still plays an important role in the variable selection process. 
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We have also considered the research question of estimating joint health effect to closely interlink 

with the question of identifying important exposures. Once the important exposures relating to the 

health outcome are identified, subsequent models (e.g., multiple linear regression) can be developed 

to investigate the interaction effect (risk of co-exposed to multiple exposures). It should be 

acknowledged that current development in environmental mixture analyses has been limited to 

produce reliable estimates of overall health effect from multiple environmental exposures. Some 

methods such as weighted quantile sum regression (WQSR) (Carrico et al., 2015) have been 

considered, but were not highlighted here because of its strong assumption on the direction of effects 

and inability to account for interaction and nonlinearity (at least in its present form). In the process of 

method selection, we have also identified Bayesian profile regression (BPR) and multivariate adaptive 

regression spline (MARS) as promising approaches for multiple exposure analyses, but more validation 

and discussion are needed to confirm their performance. Interested readers could refer to relevant 

sources for BPR (Molitor et al., 2010, Papathomas et al., 2011, Pirani et al., 2015) and MARS (Lu et al., 

2021, Nacar et al., 2020, Nieto et al., 2015)). 

 

This does not suggest the unselected methods are inferior compared to the selected. Researchers 

should select appropriate methods based primarily on research goals and the features of the datasets. 

The analytic objectives and correlation structure should also be considered in part with methodology 

strength and weakness for the method selection. Below we provide the full list of methods we have 

evaluated based on the criteria. It is expected to serve as a reference for method selection in multiple 

exposure analyses. 

 

Please note that exploration of the dataset (see Appendix C) is recommended to precede any main 

analyses.
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Description of the selected methods 

 

BKMR (Bayesian kernel machine regression) 

Introduction 

The BKMR (Bayesian kernel machine regression) model (Bobb et al., 2015) is a semi-parametric 

technique to estimate individual and joint health effect from multiple exposures. For continuous 

outcome, the model is given by: 

𝒀𝒊 = 𝒉(𝒛𝒊𝟏,⋯ , 𝒛𝒊𝑴) + 𝒙𝒊
′𝜷 + 𝜺𝒊, 

 

where 𝑌𝑖  denotes the response for individual i (i = 1, …, n), 𝑧𝑖𝑀 is the mth exposure variable, h denotes 

flexible exposure-response function to be estimated, β represents the effect of the covariates and xi 

the vector of covariate. The residuals 𝜀𝑖  are assumed to be independent and identically (iid) normally 

distributed with a common variance. 

  

BKMR is one of a few approaches that were developed with the explicit goal of environmental mixture 

modelling (Bobb et al., 2015). Since it was first developed in 2015, BKMR has been widely applied in 

both toxicology and epidemiological studies, leading to some exposure-health relations that were 

previously unidentified (Valeri et al., 2017). This method became more popular with the release of the 

bkmr package in R (Bobb et al., 2018). A search of “BKMR” in abstract section in PubMed results in 

125 papers before September 2021. 

 

Implementation 

The main implementation follows the application of the R package bkmr from its developers (Bobb, 

2017, Bobb et al., 2018). The main steps and the outputs are shown in Figure 2. Briefly, three “modes” 

are available for the application: no variable selection, the component-wise variable selection (BKMR-

VS) and hierarchical variable selection (BKMR-HVS). BKMR-VS is suited for situations where: (1) there 

is a relatively small number of exposure variables, or (2) the correlation between exposure variables 

is low, or (3) the researcher intends to include all the exposure variable into the model. BKMR-HVS, 

on the other hand, is suited for highly correlated exposures variables which can be grouped based on 

correlation or empirical knowledge. The outputs from BKMR-HVS will inform the selection of variables 

from the correlated exposures within one group. 
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Figure 2. The implementation flowchart for bkmr package 

 

MCMC (Markov Chain Monte Carlo) is used to fit the BKMR model. Inputs to the models include 

outcome as a vector Y, exposure variables matrix Z, and optional confounders/covariates matrix X. A 

kernel function is used to estimate the flexible exposure-response function h(∙). Among the choices of 

several kernel functions, Gaussian kernel is often used. The model fit can be very computational 

expensive for large sample size, but can be made more efficient using a Gaussian predictive process 

could speed up the process (Bobb et al., 2018). 

 

Since it is a Bayesian model, pre-specification of priors could be helpful, but the default ones work 

well with appropriately scaled data. Convergence check with diagnostic data is an essential step after 

the model fit. The most common approach is to visually check the trace plot (by using the embedded 

code – TracePlot() in the bkmr package). 

 

The output contains the posterior inclusion probabilities (PIPs) and the estimated exposure-response 

function. The PIPs indicate the importance of exposure variables, while the exposure-response 

function can be analysed cross-sectionally to produce the single-exposure associations, interaction 

assessment, and joint health effect estimate. The bkmr package include visualisation functions 

embedded in ggplot, providing a range of options for result presentation. The presentation and 

interpretation of results can be flexible. Several recent publications could provide reference for the 

interpretation of results (Valeri et al., 2017, Bauer et al., 2020). An online tutorial for the package 

application is also available (https://jenfb.github.io/bkmr/overview.html). 

https://jenfb.github.io/bkmr/overview.html
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Strengths and limitations 

The main benefit of BKMR is its comprehensive outputs that serves most research objectives in 

environmental mixture modelling (i.e., identification of important exposures and individual effect, 

joint health effect estimate, and informal interaction assessment). BKMR also produces an estimate 

of model uncertainty (in the form of credible intervals). It would be convenient for researchers to 

answer their research questions by applying this model alone, without the need to apply multiple 

models at one time. The second advantage is the ability to adequately accommodate interaction and 

nonlinearity in a single model. This is achieved with by using a kernel function (e.g., Gaussian kernel) 

(Bobb et al., 2015). Finally, BKMR provides a way to account for highly correlated exposures with the 

implementation of hierarchical variable selection. This provides relative measurements of exposure 

variables importance within a pre-specified group and among groups, supporting the variable 

selection. 

 

Limitations include the requirement of a not too large sample size and the model instability when the 

number of exposure variables gets very large (>50). BKMR is also computationally expensive (i.e., 

slow). 

 

Some useful extensions 

One important variation of BKMR is Lagged kernel machine regression (LKMR) (Liu et al., 2018b). 

Similar to BKMR, LKMR can account for complex non-linear and non-additive effect of the mixture, 

additionally, identify critical exposure windows of mixtures. For working-life exposome research, 

LKMR could be useful to estimate the health effect of time-varying exposures to multi-pollutant 

mixtures from cohort studies. It has demonstrated its efficiency in high serial correlation among the 

time-varying exposures by considering each time window separately (Liu et al., 2018b). The 

computational efficiency of LKMR has been later improved by an extension of MFVB-LKMR with a 

procedure called “mean field variational approximation” which reduce the time of running the 

algorithm to just minutes (Liu et al., 2018a). Its R codes can be found on 

https://github.com/shelleyhliu/VB-LKMR-Simulations. However, both LKMR and MFVB-LKMR can only 

be used for studies with a small number of measured time windows (e.g., blood and other 

biomarkers), while some semi-continuous exposure measurement such as weekly air pollution 

measurement may not be suitable. 

  

https://github.com/shelleyhliu/VB-LKMR-Simulations
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Random Forest 

Introduction 

Random forest analysis is a non-parametric approach for classification and regression problems 

(Breiman, 2001). It focuses on prediction of the outcome rather than understanding of the underlying 

process. While it is a complex model, the basic idea is elegant and follows the simple “divide and 

conquer” principle (i.e., ensemble): sample fractions of the data, grow a randomised tree predictor on 

each small piece, then combine the trees together to make prediction based on all individual trees 

(Biau and Scornet, 2016). This simple but effective strategy leads to its successful applications in 

addressing various practical problems. 

 

However, epidemiological questions are causal inference by nature. Random Forest can therefore be 

used as a variable selection method to identify important exposures, without giving the parametric 

estimate of effect size. Such importance is often evaluated by extent of increase in prediction error 

when the variable is rearranged, where little error in prediction accuracy implies low importance 

(Breiman, 2001). Gini index is commonly used to indicate the variable importance. 

 

Application of random forest has been limited in occupational epidemiological studies, where among 

only a handful of examples, Faramawi and colleagues (Faramawi et al., 2021) investigated which 

occupational risk factors were associated with increased pancreatic cancer risk in a case-control study 

for poultry plant workers. 

 

Implementation 

There are many R package options for random forest to make the implementation friendly. Except the 

“classic” randomForest package (RColorBrewer and Liaw, 2018), there are VSURF (Genuer et al., 2015), 

ranger (Wright and Ziegler, 2015), and many others. Some studies have compared the performance 

of those R packages with different types of datasets (Speiser et al., 2019), which suggested that the 

VSURF R package performs better than other packages in general, compared with other packages that 

were compared with. The packages varSelRF (Diaz-Uriarte and Diaz-Uriarte, 2017), Boruta (Kursa et 

al., 2020), and ranger are also suited for datasets with many variables. Details of the implementation 

process can be found in respective R package description, and for popular R packages, there are 

tutorials available for readers to follow (ranger R package for example: https://uc-

r.github.io/random_forests). 

 

https://uc-r.github.io/random_forests
https://uc-r.github.io/random_forests
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Strengths and limitations 

One important advantage of random forest is the high performance in dealing with high-dimensional 

data (Biau and Scornet, 2016). Random forest also demonstrate capacity to capture complex 

nonlinearities and interaction (Breiman, 2001). Moreover, the implementation of random forest is 

very user-friendly, and the parameters are easy to tune. 

 

The high prediction accuracy by random forest is at the expense of a lower interpretability compared 

with conventional classification and regression tree (CART) (James et al., 2013). The results from 

random forest can only indicate the variable importance related to outcome, without any further 

details regarding the extent of effect, the interaction and dose-response relations. Random forests 

are found to be biased while dealing with categorical variables, and are usually computationally 

demanding (Strobl et al., 2007). 

 

Some useful extensions 

Random survival forests is a useful extension from random forests method to analyse right-censored 

survival data (Ishwaran et al., 2008). Several packages are available such as randomForestSRC (tutorial 

available https://luminwin.github.io/randomForestSRC/articles/getstarted.html). An example of 

application of random survival forest is where Dietrich and colleagues (Dietrich et al., 2016) 

investigated the disease-associated variables in complex data (with time-to-event outcome, high 

dimensional metabolomics, and prospective cohort design), and the results demonstrate random 

survival forests method as a promising approach for such type of data. 

  

https://luminwin.github.io/randomForestSRC/articles/getstarted.html
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LASSO (Least absolute shrinkage and selection operator) 

Introduction 

Based on the common approach from ordinary least square (OLS) that minimise the residual sum of 

squares, LASSO performs variable selection by imposing a shrinkage penalty on the size of coefficients 

towards zero – the l2-norm (Tibshirani, 1996). Such constrain leads to some unimportant coefficients 

that are exactly 0 and hence gives more interpretable models. LASSO finds coefficients by minimising 

the following quantity: 

∑(𝑦𝑖 − 𝛽0 −∑𝛽𝑗𝑥𝑖𝑗

𝑝

𝑗=1

)

2

+ λ∑|𝛽𝑗|

𝑝

𝑗=1

𝑛

𝑖=1

 

 

where i stands for observation index i = 1, 2, …, ni; j (j = 1, 2, …, p) stands for the number of variable 

indexes; the first part is the RSS (residual sum of squares) that is the same with what ordinary least 

square tries to minimise, and the λ represents the penalty term that forces some of the coefficients 

to be exactly zero when λ is sufficient large (λ ≥ 0). The tuning parameter λ can be determined with 

cross-validation. 

 

Since it was developed in 1996, it has been widely applied in many fields of research and many 

extensions have been further developed. Similar to random forest, LASSO has been mainly used to 

identify exposure variables that are associated with certain health outcomes in epidemiological 

studies. For example, Zhang and colleagues applied LASSO to identify metal components associated 

with cardiac autonomic responses among welders (Zhang et al., 2017). An extensive simulation study 

also demonstrated the penalised approaches (i.e., LASSO and Elastic Net) performs particularly well 

for correlated exposures in case-control studies (Lenters et al., 2018). 

 

Implementation 

The R package glmnet offers a simple and fast implementation of LASSO algorithm. It has also been 

widely used to fit generalised linear and similar models (e.g., Elastic net) via penalised maximum 

likelihood (Friedman et al., 2021). A comprehensive guide of the package can be followed via 

https://glmnet.stanford.edu/articles/glmnet.html. Cross-validation can also be implemented with the 

cvfit() command to determine an appropriate λ for our model. 

 

A proper selection of the penalisation parameter λ  is an important part of LASSO adjustment. It 

control the number of variables to be selected (degree of shrinkage) and model bias (Lahiri, 2021). For 

high-dimensional data, the quality of the variable selection can be improved with stability selection 

https://glmnet.stanford.edu/articles/glmnet.html
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(Meinshausen and Bühlmann, 2010). Based on the subsampling in combination with high-dimensional 

selection algorithms, stability selection can provide finite sample control for the per-family error rate, 

thus offering a transparent principle to choose a proper amount of regularisation or penalisation (i.e., 

λ.) (Meinshausen and Bühlmann, 2010). The stability selection can be easily implemented with R 

package stabs (Hofner et al., 2017) (https://cran.r-project.org/web/packages/stabs/stabs.pdf). 

 

Strengths and limitations 

Compared with other two methods, LASSO is advantageous in terms of producing interpretable results 

and simple implementation. The algorithm produces the effect estimates for the selected exposure 

variables, which fits well for epidemiological interpretation. LASSO also demonstrate robustness to 

multicollinearity, and the ability to accommodate different outcome types. It was originally suggested 

that the LASSO would be best for dataset with a small to moderate number of exposure variables with 

moderate-sized effects (Tibshirani, 1996). 

 

The pure LASSO is also limited by its high false discovery rate, although this can be partly addressed 

with stability selection as mentioned previously. For a group of exposure variables with high pair-wise 

correlation, LASSO tends to select one variable completely at random. Additionally, pure LASSO 

algorithm assumes linear exposure-response relationships and no interaction, which could be 

unrealistic for real-world epidemiological data. Several extensions were developed to partly account 

for those limitations. 

 

Some useful extensions 

Elastic net is one important extension that uses a weighted sum of lasso and ridge regression penalties 

to improve the algorithm performance (Zou and Hastie, 2005). One added value of the elastic net is 

the algorithm accounts for a grouping effect where strongly correlated variables tend to be in or out 

of the model together, thus reduce the false discovery rate (Zou and Hastie, 2005). Elastic net is also 

reported to perform better for high-dimensional data (number of variables (p) much higher than 

number of observation (n)) compared with LASSO (Zou and Hastie, 2005). One example of its 

application is that Zhang and colleagues studied the association between some highly correlated 

environmental chemical contaminants and birth weight using elastic net regression (Zhang et al., 

2017). Implementation of elastic net can also be performed with the glmnet package. 

 

Hierarchical group-Lasso regularization is an extension for learning linear interaction models that 

satisfy strong hierarchy (interaction can be present only if both of its main effects are present) (Lim 

https://cran.r-project.org/web/packages/stabs/stabs.pdf
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and Hastie, 2015). It can model pairwise interactions for both categorical and continuous variables 

and shows good performance for high-dimensional data (e.g., genome-wide association study). 

Implementation of this approach can be realised with the R package glinternet (Michael, 2021). 

Another extension is generalized additive model selection (GAMSEL) which can be used to model low-

complexity curves – an approach to accommodate nonlinear effect (Chouldechova and Hastie, 2015). 

This derivative can be implemented with gamsel package in R (Alexandra, 2018). 
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Table 1. Overview of the three selected methods for multiple exposure modelling (BKMR, Random Forest and LASSO) 

 

Method 
Analytical 

objective 
Outcome type Strengths Weaknesses R packages Extension 

BKMR 

exposure-

response surface 

estimate 

continuous; 

categorical 

- address multiple research 

questions 

- accommodate interaction 

and nonlinearity 

- provide a way to account for 

correlated exposures 

- require only 

moderate sample 

size 

- limited number of 

exposure variables  

- computationally 

expensive 

bkmr 

LKMR and MFV-LKMR 

extension for longitudinal 

data 

Random 

Forest 

variable 

selection 

continuous; 

categorical 

- account for interaction and 

nonlinearity 

- perform well for high-

dimensional data 

- easy to tune parameters 

- results are hard to 

interpret 

- computational 

expensive 

randomForest; 

ranger 

Random survival forests; 

XGBoost 

LASSO 
variable 

selection 

continuous; 

categorical 

- able to control for 

confounders 

- flexible data input type 

- extensions are available to 

account for grouped and 

correlated exposures, 

interaction, and nonlinearity 

- additional tools are 

needed to make 

statistical inference 

- assume linear 

exposure-response 

relationships 

glmnet 

Elastic net; GAMSEL; 

Hierarchical group-Lasso 

regularization 
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Appendix B – Selection of methods for multiple exposure analysis 

Method collection 

A systematic literature search has been performed to provide the experts with a complete list of methods that are 

suited for the purpose of the tutorial and the proposed research questions. Keywords including “multiple 

exposure”, “co-exposure”, “multipollutant”, “multi-pollutant”, and “mixture” were searched with Google Scholar, 

PubMed, Scopus, and Web of Science. The list of methods for expert-rating was mainly synthesized by cross-

comparing recent methodological reviews on multiple exposures/exposome/multipollutant mixtures, mostly in 

the fields of environmental epidemiology and toxicology (Agier et al., 2016, Lazarevic et al., 2019, Stafoggia et al., 

2017, Taylor et al., 2016, Kino et al., 2021, Malovini et al., 2016, Guillien et al., 2021, Billionnet et al., 2012, Tanner 

et al., 2020, Vuong et al., 2020, Santos et al., 2020, Bellinger et al., 2017, Bi et al., 2019, Braun et al., 2016, Gibson 

et al., 2019a, Huang et al., 2018, Oskar and Stingone, 2020). 

 

In addition to publications gathered through the literature search, several high-impact papers with focus on the 

application of machine learning have also been reviewed and integrated into the list (Bi et al., 2019, Bellinger et 

al., 2017, Oskar and Stingone, 2020). Several model comparison papers were also reviewed (Agier et al., 2016, Sun 

et al., 2013, N et al., 2019, Malovini et al., 2016, Le Borgne et al., 2021, Barrera-Gomez et al., 2017, Chiu et al., 

2018, Lenters et al., 2018, Song et al., 2018, Gibson et al., 2019b). To ensure a complete list of methods, we also 

used the network of papers to capture previously unidentified studies and methods (via 

https://www.connectedpapers.com/). Flexibility was also given to experts that allows them to add previously 

unlisted methods while giving scores. 

 

This process produced a total of 49 statistical methods (including their derivatives), see complete list in Appendix 

D. 

 

Evaluation criteria 

The criteria were developed as a guide for experts to formally evaluate the methods in terms of performance, 

availability, and interpretability. Efforts in comprehensive literature review, rounds of discussion with experts, and 

external feedback were made to devise the criteria as follows: 

 

1) Performance 

The performance of a method indicates the inherent capacity to handle complex exposure-outcome 

relationships by accounting for challenges such as multicollinearity. This criterion would also reflect the 

method’s ability to address questions that are important to environmental/occupational epidemiologist such 

as interaction and nonlinearity. In addition, the method performance would also be assessed under different 

research questions and datasets with model comparison studies. This domain would essentially answer: “What 

can the model do?” and “On the relative scale, how good the model is?”.  

https://www.connectedpapers.com/
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 -/0/+ Note 

1.1 Does the model rely on assumptions that are widely applicable?   

1.2 Can indicate model uncertainty (e.g., FDR)?   

1.3 Can distinguish confounders from other covariates?   

1.4 Reasonable handling of multicollinearity? 

         [e.g., -1 for not helpful at all; 0 for average (e.g., randomly drop/select 

correlated ones); 1 for methods with more justified approaches.] 

  

1.5 Can account for nonlinearity in a principled way?   

1.6 Can identify time windows of susceptibility to exposures?   

1.7 Can assess two-way interaction in a principled way?   

1.8 Can assess non-linear and/or high-dimensional interaction effect?   

 

2) Availability 

The availability refers to how accessible the method can be applied by non-statisticians (i.e., whether the 

readers can easily find other useful resources beyond the tutorial). A widely applied method would imply its 

popularity, accessibility, and most likely, its usefulness for the research questions applied. Moreover, more 

studies that applied the method would mean more examples are available for readers to support the 

interpretation of the produced results. 

 -/0/+ Note 

2.1 Is there an existing package/program/codes in 

R/STATA/SAS/WINBUGS/GitHub for this method? 

  

2.2 Is there an existing tutorial/textbook chapter for this method?   

2.3 Has there been application(s) in environmental epidemiology-related studies?   

 

3) Interpretability  

Interpretability indicates the extent to which the results can be interpreted and applied in policymaking. 

Policymakers would first want to know the risk of bias associated with the methods (whether the produced 

results can be trusted, which can be reflected by the model’s ability to adjust for confounders, or the justification 

of parameter selection). This criterion essentially indicates the feasibility of the method being integrated in risk 

assessment process.  

 -/0/+ Note 

3.1 Can indicate importance of individual exposures?  

[0 for list of important variables; 1 for providing a quantified “importance” of 

the exposures] 

  

3.2 Can provide summarised effect estimates and associated confidence 

intervals? 
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3.3 Are results insensitive to model parameter choices?  

[-1 for very difficult tuning process, 0 for sensible tuning, 1 for no need of 

tuning] 
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Appendix C – Exploratory Data Analysis 

For most statistical analyses, it is recommended to perform exploratory data analysis (or pre-analysis) before main 

analyses. A well-conducted pre-analysis would inform researchers about data structure and support method 

selection. 

 

In general, descriptive analyses include the following parts:  

a) to identify missing data and choose the right replacement strategy 

b) to examine distributions of variables and select transformation method 

c) to identify outliers and decide strategies (e.g., IQR and PCA) 

 

In addition to those tasks, for “multiple exposures” research questions, one could pay more attention to: 

d) to summary cohort demographic characteristics  

e) to explore patterns of correlation between exposures 

f) to assess the unadjusted and adjusted associations between each exposure and outcome 

 

More comprehensive discussions of exploratory data analyses have been presented elsewhere (Pearson, 2018, 

Behrens, 1997, Wickham and Grolemund, 2016, Wirth and Hipp, 2000). Several R packages are available for 

automatic exploratory analyses such as DataExplorer and visdat, and a complete list and comparison of different 

R packages for automatic exploratory analyses have been described (Staniak and Biecek, 2019).We also 

recommend researchers to employ visualisations to explore directions of associations and possible nonlinear 

relationships. 
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Appendix D – Full list of methods for multiple exposure analysis 

Method outcome design high-dim 
non-

linear 
interaction temporal confounder grouping uncertainty interpretation Overall 

R 
packages 

Comments 

Standard methods          

Single-exposure 
models (a.k.a. 
exposome/enviro
nment-wide 
association study 
ExWAS) 

+ + + + - + + - - -- 1 many 

Single exposure 
analyses could be 
implemented in any 
chosen model (incl. 
models using splines). 
Interpretation of 
results is extremely 
difficult (impossible) if 
there is the potential 
for co-exposure 
confounding. 
Interactions could be 
included in e.g., bi-
pollutant models. 

Full multiple 
regression models 
(including models 
using regression 
splines) 

+ + - + 0 - + - + + 2 many 

Only useful when 
there is a limited 
number of exposures 
(p<<n) and there is no 
strong multi-
collinearity. If not, 
precision will be low 
and interpretation 
becomes very hard. 

Including 
univariate or 
bivariate 
smoothing splines 

+ + - + 0 - + - + + 3 mgcv 
See above. This is 
actually a form of 
penalized regression. 

Methods estimating "mixture effects"        
BKMR is included as a 
machine-learning 
method 

Weighted 
Quantile Sum 
(WQS) regression 

            

The estimated 
"mixture" effect is a 
weighted average of 
exposure-specific 
effects and does not 
account for 
interaction. 
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Method outcome design high-dim 
non-

linear 
interaction temporal confounder grouping uncertainty interpretation Overall 

R 
packages 

Comments 

Generalized WQS 0 0 0 - - - + + - 0/- 5 gWQS 
No estimate of 
precision of weights is 
provided 

Bayesian 
Generalized WQS 

0 0 0 - - - + + + 0/- 5 BayesGWQS 

Uses JAGS. Bayesian 
framework allows 
uncertainty estimation 
of weights 

Lagged WQSR 0 0 0 - - + + + - 0/- 5 lwqs 
Adaptation of gWQS 
for longitudinal data 

BWS (Bayesian 
weighted sums) 

0 0 0 - - - + + - 0/- 5 rjags 
Implemented with 
JAGS script 

Non-parametric (semi-parametric) methods         

MARS 
(Multivariate 
adaptive 
regression spline) 

0 0 0 + + - + - 0 + 7 earth 

Relatively good for 
models with not too 
many predictors. 
Includes a variable 
importance measure. 

NPB - 0 - - + - + - + + 5 mmpack 

Bayesian model with 
DPP, only for 
continuous (gaussian) 
outcomes 

DSA + 0 0 0 0 - + - 0/- + 6 dsa 
package no longer 
available (but partDSA 
is) 

Methods relying on dimension reduction        

Usefulness depends 
on whether the latent 
variables can be 
interpreted. For the 
unsupervised methods 
these are the factors 
that explain the 
correlations. 

Based on PCA              
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Method outcome design high-dim 
non-

linear 
interaction temporal confounder grouping uncertainty interpretation Overall 

R 
packages 

Comments 

PCA regression + + + - - - + + - - 4 
prcomp, 
kernlab 

PCA and extensions 
like non-linear (kernel) 
PCA. 

NSPCA (non-
negative sparse 
PCA) 

+ + + - - - + + - - 4 nsprcomp 

A bit easier to 
interpret, but more 
restricted in the type 
of PCA models that 
can be fitted. 

SPCA (supervised 
PCA) 

+ - + - - - - + - - 4 superpc 
Not so familiar with 
this 

ECM (Exposure 
continuum 
mapping) 

+ + + 0 0 - - - - - 4 ECM 
Self-organising maps 
followed by spatial 
analysis. 

Partial Least Squares (PLS) regression         

PLS regression 0 0 + - - - - + - - 5 mixOmics  

sparse PLS 
regression 

0 0 + - - - - + - - 6 mixOmics  

Structural Equation Modelling (SEM)          

Maximum 
Likelihood SEM 

0 0 0 - - - + + - 0 5 lavaan 
Single factors 
assumed for each 
group of variables. 

Bayesian Factor 
Analysis (BFA) 

0 0 - - - - + + + 0 5 blavaan 

Bayesian methods 
tend to be 
computationally 
demanding 

Bayesian Profile 
Regression (BPR) 

0 0 - - + - - - + - 5 PreMiuM  
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Method outcome design high-dim 
non-

linear 
interaction temporal confounder grouping uncertainty interpretation Overall 

R 
packages 

Comments 

Penalized regression methods         

Lasso/Elastic Net + 0 + - - - + - 0 + 7 glmnet 

Pure lasso methods 
tend to select too 
many variables 
(geared towards 
prediction), but 
stability selection can 
be used to reduce 
false positive rates. 

Grouped Lasso + 0 + - - - + + 0 + 7 grplasso  

Interaction Lasso 0 0 + - + - + - 0 + 7 glinternet strong hierarchy only 

Hierarchical 
Interaction Lasso 

0 0 + - + - + - 0 + 7 hierNet 
both strong and weak 
hierarchy 

Non-linear Lasso 0 0 + + - - + - 0 + 7 gamsel based on group-lasso 

Both non-linear 
and interaction 
effects 

+ 0 - + + - + - 0 0 6 plsmselect 

Combination of mgcv-
based selection and 
glmnet, only suitable 
with a small number 
of non-linear effects. 

PCA Lasso + 0 + - - - + + 0 0 6 pcLasso 
Lasso for PCA 
regression 

Generalized Linear 
Mixed Model 
(GLMM) lasso 

0 + + + - - + - 0 + 7 glmmLasso  

Alternative 
frequentist 
penalties (MCP) 

0 0 + - - - + + 0 + 7 

ncvreg, 
grpreg, 
grpregOverla
p 

Non-convex penalties 
have lower error 
rates, but are more 
difficult to 
computationally and 
have not been 
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Comments 

implemented for 
models with 
interactions or non-
linear models. 

Bayesian 
horseshoe 
regression 

0 + 0 - - - + - + + 7 brms 

Computationally 
demanding, but avoids 
the problem of using 
one penalty to achieve 
both selection and 
estimation. 

Variable selection methods          

Best subsets 0 0 - - - - + - - 0 5 bestsubset on Github 

Stepwise selection + + - - 0 - + - - 0 5 base  

Bayesian model 
averaging (BMA) 

+ 0 0/+ - 0 - + - + + 6 BAS 
Limited to linear 
models only 

R2GUESS - 0 + - 0 - 0 - + + 7 R2GUESS 
Only available for 
gaussian outcomes 

Structured 
additive 
regression models 
using spike-and-
slab variable 
selection 

+ + 0/- + + - + - + + 7 
spikeSlabGA
M 

Sampling method 
struggles with strongly 
correlated variables. 

Non-parametric 
Varying-coefficient 
models using 
spike-and-slab 
variable selection 

- + 0/- - - + 0 - + + 6 NVCSSL 
Only available for 
continuous outcomes 

Machine learning algorithms          
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R 
packages 

Comments 

CART 0 0 + + + - 0 - 0 0 6 rpart 
Needs more tuning 
than random forest 

CART for survival 
analysis 

+ 0 + + + - 0 - 0 0 6 LongCART  

Random forests 0 0 + + + - 0 - 0 0 8 
ranger, many 
others 

Easy to tune 

RF for survival 
analysis 

+ 0 + + + - 0 - 0 0 7 
randomFores
tSRC 

 

Boosted trees 
(incl. stochastic 
gradient boosting) 

+ 0 + + + - 0 - 0 0 8 xgboost 
May be difficult to 
tune 

Boosted 
regression models 
(incl. GAMBOOST) 

+ 0 + + + - 0 - 0 0 7 mboost 
Not so useful for 
interactions 

Support vector machines (SVM)         

Geared towards 
classification, but can 
be used for regression 
also. Works well with 
large p, but not with 
large n (although 
there are 
implementations that 
try to deal with that, 
e.g., github 
liquidSVM). 

SVM for 
classification and 
regression 

+ 0 0 + + - 0 - 0 0 7 kernlab  

SVM for survival 
outcomes 

+ 0 0 + + - 0 - 0 0 7 survivalsvm  

Kernel semi-
parametric models 
for continuous 
outcomes 

- 0 0 + + - 0 - 0 0 7 KPSM  
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Bayesian Kernel 
Machine 
Regression 
(BKMR) 

0 ? - + + - + + + + 8 bkmr 
Method of choice for 
smaller datasets with 
<50 or so exposures 

Lagged Kernel 
Machine 
Regression (LKMR) 

0 ? - + + + + + + + 7 bkmrdlm 
BKMR for distributed 
lag models 

Bayesian Multiple 
Index Models 
(BMIM) 

0 ? - - - - + + + 0 6 
bsmim2 
(github) 

BKMR with index 
functions (WQS) 

Artificial neural 
networks (ANN) 

+ 0 + + + + 0 - 0 0 7 
keras, 
neuralnet 

Can be very difficult to 
tune 

Super Learner 
algorithm 

NA NA NA NA NA NA NA NA NA - - SuperLearner 

Heterogeneous 
ensemble method 
(i.e., using different 
types of models) and 
therefore as good as 
the methods that 
make up the 
ensemble. 
Computationally 
demanding. 

 

Note: generally, “+” means the model performs well for that criterion; “0” means moderate performance, and “-1” indicates its limited ability for the corresponding criterion. Particularly for “outcome” 

criterion, “+” means model includes GLM+survival; “0” means model includes at least binomial+gaussian; and “-” means either one of these. For “design”, “+”: allows for clustering; “0”: no mixed models; and 

“-1”: only prospective designs. “?” indicate uncertainty. “High-dim” stands for the model performance for large datasets. Other columns correspond to the previously described criteria. 

 


